

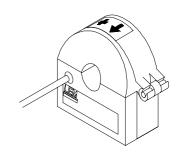
Current Transducer HT 200 to 500-SBD

For the electronic measurement of DC, AC and pulsed currents, with a galvanic isolation between the primary (high power) circuit and the secondary (electronic) circuit.

Electrical data

	Туре	Primary nominal DC or Rms current I _{PN}	Primary current measuring range	I _P
	HT 200-SBD	200 A	0 ± 400 A	
	HT300-SBD 300 A		0 ± 600 A	
	HT400-SBD 400 A		0 ± 800 A	
	HT 500-SBD 500 A		0 ± 1000 A	
Î _P	Overload capacity (Ampere Turns)		30000	Α
V _{OUT}	Analogue output voltage @ ± I _{PN}		± 5	V
$R_{\scriptscriptstyle oldsymbol{L}}$	Load resistance		>10	kΩ
$V_{\rm c}$	Supply voltage (± 5 %)		± 15	V
Ic	Current consumption (max)		20	mA
\mathbf{V}_{b}	Rms rated voltage 1)		50	V
Accuracy - Dynamic performance data				
X	Accuracy 2) @	$I_{PN}, T_{A} = 25^{\circ}C, @ \pm 15 V$	± 1	%
$\mathbf{E}_{\scriptscriptstyle oldsymbol{L}}$	Linearity 2)	IN A	± 0.5	%
			Max	
V _{OE}	Electrical offs	et voltage @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25$ °C	± 20	mV
V _{OM}		et voltage @ $I_p = 0$, $T_A = 25$ °C		
0	after an overlo	oad of 3 x I _{PN}	< 6.25	mV
\mathbf{V}_{OT}		of offset voltage $T_A = 0 + 70^{\circ}C$	± 3.5	mV/°K
TCE _G	Thermal drift	of gain $T_A = 0 + 70$ °C	± 0.05	%/°K
t, J		ne @ 90 % of I _P	< 7	μs
di/dt	di/dt accurate		> 50	A/µs
f	Frequency ba	indwidth (- 3 dB) ³⁾	DC 50	kHz
General data				
T _A	Ambient oper	rating temperature	0 + 70	°C
T s	Ambient storage temperature		- 10 + 85	°C

 $\underline{\text{Notes}}$: ¹⁾ For use on SELV systems or with insulated conductors on higher rated systems


2) Excludes the electrical offset

m

Mass

³⁾ Refer to derating curves in the technical file to avoid excessive core heating at high frequency

$I_{PN} = 200..500 A$

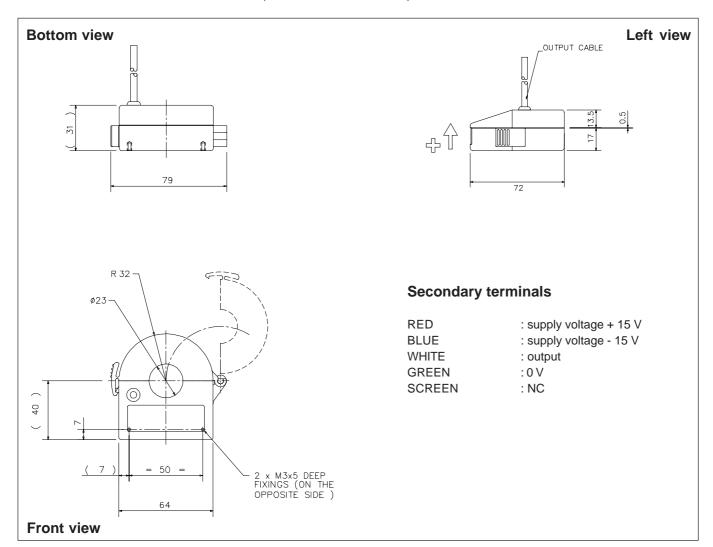
Features

- Open loop transducer using Hall Effect
- Panel mounting
- Split core design for easy installation
- Insulated plastic case to UL 94-HB.

Advantages

- Very good linearity
- Very good accuracy
- Low temperature drift
- Wide frequency bandwidth
- Very low insertion losses
- High immunity to external interference
- Current overload capability
- Low power consumption
- Wide dynamic range 200 to 500 A in one package.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptable Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

HT2/500B980902/1

160

Dimensions HT 200 to 500-SBD (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

Connection of secondary

• Enclosure

± 0.5 mm Ø 23 mm

Via 4 core screened PVC cable 1.5 m in length Moulded ABS plastic

Remarks

- $\bullet~{\bf V}_{\rm OUT}$ is positive when ${\bf I}_{\rm P}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
 90°C
- This is a standard model. For different versions (supply voltages, secondary connections, unidirectional measurements, operating temperatures, etc.) please contact us.